5.1 Physical States of Matter

solid
liquid
gas
simple: $P V=n R T$
gases have chemistry

FIG I - Torricelli's Barometer

Evangelista Torricelli, 1608-1648

Pressure

units:
1 atm $=760$ torr

$$
=760 \mathrm{~mm} \mathrm{Hg}\left(0^{\circ} \mathrm{C}\right)
$$

$$
=29.92 \text { in } \mathrm{Hg}\left(0^{\circ} \mathrm{C}\right)
$$

$$
=101.325 \mathrm{kPa}
$$

$$
=14.69595 \mathrm{psi}
$$

	Units Used to Measure Pressure
Unit Name and Abbreviation	Definition or Equivalency
Pascal (Pa)	$1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}=1 \mathrm{~N} \mathrm{~m}^{-2}$ (the SI unit)
Standard atmosphere (atm)	$101,325 \mathrm{~Pa}$ exactly
Bar (bar)	$100,000 \mathrm{~Pa}$ exactly or 0.986923 atm
Torr (torr)	$(101,325 / 760) \mathrm{Pa}$ or $(1 / 760) \mathrm{atm}$
Millimeter of mercury at $0^{\circ} \mathrm{C}(\mathrm{mm} \mathrm{Hg})$	$(101,325 / 760) \mathrm{Pa}$ or $(1 / 760) \mathrm{atm}$
Pound of force per square inch $\left(\mathrm{lbf}\right.$ in ${ }^{-2}$, or psi)	6894.757 Pa or $(1 / 14.69595) \mathrm{atm}$

EX 1. What is the pressure when the height of a column of mercury is 76.0 crn ? $\left(d_{\mathrm{Hg}}=13.5951 \mathrm{~g} \mathrm{crn}^{-3}\right.$, $g=9.80665 \mathrm{rn} \mathrm{s}^{-2}$)

5.2 ABC Laws: Avogadro, Boyle, Charles

FIG II. Boyle's Law ($V \propto 1 / P ; n, T$ constant)

Robert Boyle, 1627-1691

FIG III. A Manometer

$$
P_{\mathrm{gas}}=P_{\mathrm{atm}}+h
$$

Gay-Lussac's gas volumes

Joseph Louis Gay-Lussac, 1778-1850

Avogadro's hypothesis
$(V \propto n ; T, P$ constant)

Lorenzo Romano Amedeo Carlo Avogadro, Count of Quaregna and Cerreto, 1776-1856

FIG V. Charles's Law Experiment for Two Gases

$$
V(t)=V_{0}+\alpha V_{0} t
$$

where α is -1 / x-intercept. Experimentally it is found that

$$
\alpha=1 / 273.15^{\circ} C
$$

so that
$V(t)=V_{o}\left[1+\frac{t}{273.15^{\circ} \mathrm{C}}\right]$
where V_{0} is the volume at $0^{\circ} \mathrm{C}$.

5.3 Ideal Gas Equation of State $-R=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8.31451 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

EX 2. What is the volume occupied by one mole of an ideal gas at STP conditions?

EX 3. A fixed quantity of gas at $23^{\circ} \mathrm{C}$ has a pressure of 748 torr and occupies a volume of 10.3 L .
a) What would be the volume if the pressure is increased to 1.88 atm ? (Boyle's Law)
b) What would be the volume if the temperature is increased to $165^{\circ} \mathrm{C}$? (Charles's Law)

EX 4. Hydrogen fills a $250-\mathrm{L}$ reaction vessel at $100^{\circ} \mathrm{C}$ and 1.00 atm pressure. Determine the volume of the same quantity of hydrogen at $0^{\circ} \mathrm{C}$ and 1.50 atm .

EX 5. The composition of a liquid is $25.23 \% \mathrm{~S}$ and $74.77 \% \mathrm{~F}$. It boils at $29^{\circ} \mathrm{C}$ where the density of the vapor is $9.95 \mathrm{~g} \mathrm{~L}^{-1}$ at a pressure of 738 mm Hg . What is its molecular formula?

EX 6. You have a 2-L and a 3-L flask at the same temperature. The gas in the 2-L flask has a mass of 4.8 g and that in the $3-\mathrm{L}$ flask has a mass of 0.36 g . If the pressure in the $2-\mathrm{L}$ flask is 10 times greater than the pressure in the 3-L flask, do the two gases have the same molar mass? If not, which contains the gas of higher molar mass?

5.4 Gas Stoichiometry

EX 7. Calcium hydride $\left(M_{\mathrm{CaH} 2}=42.0938 \mathrm{~g} / \mathrm{mol}\right)$ reacts with water to form hydrogen gas

$$
\mathrm{CaH}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{H}_{2}(g)
$$

How many grams of CaH_{2} are needed to generate 64.5 L of H_{2} gas if the pressure of H_{2} is 814 torr at $32^{\circ} \mathrm{C}$?

5.5 Dalton's Law of Partial Pressure

mole fraction, X
EX 8. 0.250 mol of $\mathrm{N}_{2}, 0.500 \mathrm{~mol}$ of O_{2}, and 0.250 mol of CO are in a vessel at 1 atm and $25^{\circ} \mathrm{C}$. The container is heated to $50^{\circ} \mathrm{C}$.
a) What is the pressure of the gas mixture?
b) What is the partial pressure of O_{2} ?
collecting gas over water

EX 9. $\quad 15.00 \mathrm{~g}$ of sodium azide is decomposed by heating and the nitrogen gas which evolves is collected over water at $25^{\circ} \mathrm{C}$ at a barometric pressure of 745 mm Hg . What volume of dry gas is collected if the vapor pressure of water at $25^{\circ} \mathrm{C}$ is 24 mm Hg ?

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

5.6 Kinetic-Molecular Theory of Gases (Boltzmann, Maxwell, Clausius)

$P V=n R T$ - empirical, no molecular information
postulates of kinetic theory:
molecular volume is negligible compared to distance between molecules
large number of molecules, ceaseless random motion
no forces of attraction or repulsion between molecules
all collisions are elastic (no energy lost)
Newton's laws of motion obeyed
ON A MOLECULAR LEVEL WHAT IS THE PRESSURE OF AN IDEAL GAS DUE TO?

Collisions with surfaces create pressure.
conclusions

1. $P V=n R T=1 / 3 N m\left\langle u^{2}\right\rangle$
2. $1 / 2 N_{0} m\left\langle u^{2}\right\rangle=3 / 2 R T$

$$
\text { average kinetic energy }(T)
$$

3. $\left\langle u^{2}\right\rangle=3 R T / M$
root-mean-square (rms) speed $=\sqrt{ }\left\langle u^{2}\right\rangle$

$$
u_{\mathrm{rms}}=\sqrt{ } 3 R T / M
$$

(average $=\sqrt{ } 8 R T / \pi M ;$ most probable $=\sqrt{ } 2 R T / M$)
Boltzmann's constant, $k_{\mathrm{B}}=R / N_{0}-->$

$$
P V=n R T=N k_{\mathrm{B}} T
$$

FIG VI - Relating $P V$ to m, u

(a)

(b)

(c)

(d)

EX 10. What is $u_{\text {rms }}$ for helium at $-73^{\circ} \mathrm{C}$?

EX 11. At STP hydrogen and deuterium can be considered to be ideal gases. If $\left\langle u_{\mathrm{H} 2}\right\rangle=1.70 \times 10^{5}$ $\mathrm{cm} \mathrm{s}{ }^{-1}$ at STP what is $\langle u\rangle$ for D_{2} ?

Maxwell-Boltzmann Distribution Law of Molecular Speeds

$$
f(u)=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} u^{2} \mathrm{e}^{-m u^{2} / 2 k T}
$$

FIG VII. effect of molar mass

Variation of Velocity Distribution with Temperature

FIG VIII. effect of temperature

5.7 Graham's Law of Effusion

OBSERVATION: effusion rate for escape of a gas through a tiny hole into a vacuum $\propto 1 / \sqrt{ } M$

KINETIC THEORY INTERPRETATION: two gases at same T, P, V contain equal numbers of molecules (Avogadro) so

During effusion

』 $\begin{aligned} & \mathrm{N}_{2} \\ & \mathrm{H}_{2}\end{aligned}$
Lighter molecules $\left(\mathrm{H}_{2}\right)$ with higher average speeds strike the barrier more often and pass more often through it than heavier, slower molecules $\left(\mathrm{N}_{2}\right)$ at the same temperature.

EX 12. A sample of nitrogen effuses through a tiny hole twice as fast as an unknown gas. Determine the molar mass of the unknown gas.

5.8 Collisions of Gaseous Molecules with a Wall

Consider N molecules enclosed in a fixed volume V at a temperature T. The fraction of molecules with x component of velocity between u_{x} and $u_{x}+\Delta u_{x}$ is

$$
\frac{\Delta N_{u_{X}}}{N}=f\left(u_{x}\right) \Delta u_{x}
$$

where $f\left(u_{x}\right)$ is the Maxwell-Boltzmann distribution law on the previous page for motion in one dimension. Then the total number of molecules with x component of velocity between u_{x} and $u_{x}+\Delta u_{x}$ is

$$
\Delta N_{u_{x}}=N f\left(u_{x}\right) \Delta u_{X}
$$

Now examine an area A of the wall of the container and a distance $u_{x} \Delta t$ in front of it. A molecule with x component of velocity u_{x} (+ defined as going to the wall and - as going away) will strike the wall in Δt if $u_{\mathrm{x}} \Delta t$ is greater than or equal to its distance from the wall. Then any molecule within the volume V will strike the wall within Δt if its x component of velocity is greater than or equal to u_{x}. The fraction of molecules located within V^{\prime} is just V^{\prime} / V. Then the total number of molecules with velocity u_{x} located within V^{\prime} is

$$
\begin{aligned}
\Delta N_{u_{X}, V^{\prime}} & =N \frac{V^{\prime}}{V} f\left(u_{X}\right) \Delta u_{X} \\
& =\frac{N}{V} A f\left(u_{X}\right) u_{x} \Delta u_{x} \Delta t
\end{aligned}
$$

and the total number colliding with the wall W in time Δt is found by summing over all u_{x} (actually integrating)

$$
\begin{aligned}
\Delta N_{\mathrm{W}} & =\frac{N}{V} A \Delta t \int_{0}^{\infty} f\left(u_{x}\right) u_{x} d u_{x} \\
& =\frac{N}{V} A \Delta t\left(\frac{1}{2}\left\langle u_{1 D}\right\rangle\right) \\
& =\frac{N}{V} A \Delta t\left(\frac{1}{4}\left\langle u_{3 D}\right\rangle\right)
\end{aligned}
$$

The frequency of molecular collisions with the wall, Z_{w} (rate of wall collisions - note that the units are those of a frequency, s^{-1}), is

$$
\begin{aligned}
Z_{\mathrm{W}} & =\frac{\Delta N_{\mathrm{W}}}{\Delta t} \\
& =\frac{1}{4} \frac{N}{V} A\langle u\rangle
\end{aligned}
$$

5.9 Collisions Between Gaseous Molecules (Intermolecular Collisions)

By rewriting the previous equation we will uncover a physical relationship common to all collisions, in particular, the rate of intermolecular collisions.
perpendicular to direction of motion

$$
Z=\text { (number density }) \times(\text { cross sectional area }) \times(\text { relative speed })
$$

Then, Z, the number of collisions of one molecule with all of the other identical molecules per unit time is

$$
Z=\frac{N}{V} \pi d^{2} \sqrt{2}\langle u\rangle
$$

where d is the diameter of the molecule and the factor of $\sqrt{ } 2$ converts the average speed to the average relative speed.

An important quantity in kinetic theory is the average distance a molecule travels between two successive intermolecular collisions. This is called the mean free path. The average number of collisions experienced by one molecule in unit time is Z. The distance the molecule has traveled in this unit time is $\langle u\rangle$. Therefore, the mean free path λ is

$$
\lambda=\frac{\langle u\rangle}{Z}=\frac{1}{\sqrt{2}(N / V) \pi d^{2}}
$$

EX 13. The pressure in interplanetary space is estimated to be on the order of 10^{-24} torr. Assuming the presence of only hydrogen atoms, determine the average number of atoms per m^{3}, the number of collisions per atom s^{-1}, and the mean free path. Take the diameter of a hydrogen atom, d, to be 0.25 nm and the temperature to be 2.7 K .

EX 14. For $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4},(M=390.56 \mathrm{~g} / \mathrm{mol})$ the vapor pressure is 0.010 torr at 393 K . Calculate the number of molecules that evaporate into vacuum from a $1.0 \mathrm{~cm}^{2}$ surface of the liquid at 393 K in 1.0 s . Calculate the mass that evaporates.

5.10 Real Gases - Attractive and Repulsive Forces

"The particles of the air are in contact with each other, yet they do not fit closely in every part, but void spaces are left between them, as in the sand on the sea shore: the grains of sand must be imagined to correspond to the parti-cles of air, and the air between the grains of sand to the void spaces between the particles of air. Hence, when any force is applied to it, the air is compressed, and, contrary to its nature, falls into the vacant spaces from the pressure exerted on its particles: but when the force is withdrawn, the air returns again to its former position from the elasti-city of its particles, as is the ease with horn shavings and sponge, which, when compressed and set free again, re-turn to the same position and exhibit the same bulk."

Hero of Alexandria, ~ AD 6

> "Thus far we have always considered molecules to be material points, and thus have introduced a simplification in the model which is at once in contradiction with the actual phenomena. Even a molecule in the simplest form, consisting of a single atom, must have a certain extension; the various forces exerted upon it by the other molecules can thus not be considered to act upon a single point."
> Johannes Diderik van der Waals, 1873 (Nobel Prize in Physics in 1910 "for his work on the equation of state for gases and liquids".)
> FIG IX. PV/nRT versus P for several real gases at $25^{\circ} \mathrm{C}$

Equation of state

$$
P V / n R T=1
$$

for an ideal gas. Deviations from unity due to attractive and repulsive forces between molecules. Real gases interact and have molecular volume. When molecules are very close they repel as the non-zero volumes overlap. Further separation leads to a normally weak attraction due to van der Waals forces. If the separation is very large the molecular size becomes negligible and ideal behavior is approached.

FIG X. Repulsive forces

FIG XI. Attractive forces

van der Waals equation of state - model for attractive, repulsive forces

$$
\left(P+\frac{\mathbf{a} n^{2}}{V^{2}}\right)(V-\mathbf{b} n)=n R T \quad \text { rearranging: } \quad \frac{P V}{n R T}=\frac{1}{1-\mathbf{b} n / V}-\frac{\mathbf{a n}}{R T V}
$$

attractive forces (through a) - decrease ratio < 1
repulsive forces (through b) - increase ratio > 1

EX 15. A 1.98-L vessel contains 215 g of dry ice. After standing at $26^{\circ} \mathrm{C}$, the $\mathrm{CO}_{2}(\mathrm{~s})$ turns to $\mathrm{CO}_{2}(\mathrm{~g})$. The measured pressure is 44.8 atm .
a) What pressure would an ideal gas have?
b) What pressure would a van der Waals gas have?

Van der			Waals Constants of Several Gases
Name	Formula	\boldsymbol{a} (atm $\mathbf{L}^{\mathbf{2}} \mathbf{m o l}^{\mathbf{- 2}} \mathbf{)}$	$\boldsymbol{b}\left(\mathbf{L} \mathbf{~ m o l}^{\mathbf{- 1}} \mathbf{)}\right.$
Ammonia	NH_{3}	4.170	0.03707
Argon	Ar	1.345	0.03219
Carbon dioxide	CO_{2}	3.592	0.04267
Hydrogen	H_{2}	0.2444	0.02661
Hydrogen chloride	HCl	3.667	0.04081
Methane	CH_{4}	2.253	0.04278
Nitrogen	N_{2}	1.390	0.03913
Nitrogen dioxide	NO_{2}	5.284	0.04424
Oxygen	O_{2}	1.360	0.03183
Sulfur dioxide	SO_{2}	6.714	0.05636
Water	$\mathrm{H}_{2} \mathrm{O}$	5.464	0.03049

Experimental isotherms of CO_{2} at several T. At large V_{m}, high T isotherms do not differ greatly from an ideal gas. Consider compressing gas at A at constant T. Near A, P rises in agree-ment with Boyle's law. Deviations appear at B. At C all similarity to ideal behavior lost, suddenly V_{m} decreases with-out a rise in P : line CDE. To the left of C liquid appears, there are two phases separated by a sharply defined surface. As V decreased from C to E, amount of liquid increases. No resistance to compression, gas responds by condensing. P corresponding to line CDE, when both liquid and vapor are in equilibrium, is the vapor pressure of liquid at given T. At E, sample entirely liquid. Any further reduction of V requires considerable P, as shown by sharply rising line to the left of E. "Critical isotherm", the isotherm at the critical temperature, is at $31.04^{\circ} \mathrm{C}$. The critical point is marked with a bright red dot.

Real Gases - Condense to Liquids

ideal gas

real gas

Real (solid) and van der Waals (dotted)

van der Waals predicts condensation, a phase transition

